THE BEGINNING OF BRIGHT FUTURES
ONE STUDENT AT A TIME

Success stories like Carly Taylor’s happen every day, and prove that Ogden-Weber Tech College is truly a great place to start great futures.

Earning a certificate before graduating from high school and getting a full-time job working in my field was amazing to me!

Carly Taylor
Composites

Manufacturing

Ogden-Weber Tech College is accredited by the Commission of the Council on Occupational Education.

Enroll NOW!
WWW.OWATC.EDU
801-627-8300

The Ogden-Weber Applied Technology College is accredited by the Commission of the Council on Occupational Education.

Ogden-Weber Tech College does not discriminate on the basis of race, color, national origin, sex, disability, or age in its programs and activities. The following person has been designated to handle inquiries regarding the non-discrimination policies: Patrick Butler, College Compliance Officer, Room #104, Student Services Building, Main Campus 801-627-8452

El Colegio Técnico Ogden-Weber no discrimina en base a raza, color, origen nacional, sexo, discapacidad o edad en sus programas y actividades. La persona designada para manejar las preguntas sobre las peticiones antidesmalestas es: Patrick Butler, Coordinador de cumplimiento de normas de Servicios Estudiantiles #104, Teléfono 801-627-8452

Printed July 2015
MANUFACTURING PROGRAMS

COMPOSITES
This program focuses on the skills needed to move into composites manufacturing. Areas of focus are developing composite layup skills, composite vacuum bagging, lean manufacturing, communication skills, tool making, blueprint reading, repair, and testing and inspection both in destructive and non-destructive inspection, etc. Each course provides simple and clear training for the person seeking the technical skills needed to enter the aerospace, or any other industry using advanced composites.

INDUSTRIAL AUTOMATION MAINTENANCE
Students learn to troubleshoot, repair and maintain electronic automated manufacturing assembly line systems, including electro-mechanical control systems, programmable logic controls, hydraulic and pneumatic systems, and belt and chain drive conveyor systems.

MACHINIST I
Students set up and operate a variety of computer numerical control (CNC) machines, including lathes, turning centers and machining centers; involving positioning work pieces using a wide variety of cutting tools and working with computers to machine precision work pieces.

MACHINIST II
Upon completion of Machinist Level I certificate, in the Aerospace, automotive and consumer industries.

MACHINIST III
Upon completion of the Machinist Level I and Level II certificates and by approval of the program coordinator, students set up and operate a variety of machines, including lathes, mills, surface grinders, CNC turning centers, and CNC machining centers; involving positioning work pieces and fixturing, using a wide variety of cutting tools, and working with computer CAD/CAM programs to machine precision work pieces representing components used in consumer industries.

MACHINIST APPRENTICE
As a machinist apprentice, your primary task will be to produce metal parts for industrial machinery, automobiles, aircraft, and other consumer goods. You will use lathes, grinders, mills, drilling presses and computer numerical controlled machines (CNC). You will interpret blueprints and other specifications to select correct materials, tools and fabrication processes. You need to be working in an apprenticeship-sponsored machine shop before enrolling. An AAS degree is also available in partnership with WSU.

METAL FABRICATOR
This program provides students with the skills needed to work in a fab shop environment as a fabber, fitter and/or welder. Students learn to apply the welding skills previously learned in their production welder courses in conjunction with advanced blueprint reading, precision measuring, layout and pattern development, cutting, forming, rolling, bending and finishing processes to design and build a variety of high precision projects that require a higher skill level.

NON-DESTRUCTIVE INSPECTION
Non-Destructive Inspection (NDI) technicians use multiple non-invasive techniques to inspect or validate the integrity of manufactured materials, components and structures. The NDI program teaches the five most common methods of non-destructive inspection techniques including liquid penetrant, magnetic, ultrasonic, eddy current and x-ray. This exciting career field is used by the aerospace, nuclear, highway infrastructure, petroleum, composites and transportation industries around the world.

SOLDERING TECHNICIAN
Students will learn ESD and electronic soldering safety procedures and apply proper through-hole and surface mount technology with both lead-free and lead-tin solder as used in manufacturing circuit boards. Students also learn wire harness assembly with proper wire terminations, wire preparation, labeling and wire crimping, rework, reflow and wave soldering techniques and inspection criteria under a microscope. Students will prepare for the J-STD-001 certification exam.

WELDER PRODUCTION
This program provides students with entry-level job skills to work in a production environment as a welder or welder’s helper. Students learn a variety of welding skill processes. Upon completion of this program, students who score well may be eligible to continue training in metal fabrication and advanced welding.

WELDER ADVANCED
Completing the requirements for the Advanced Welder program provides students with a wide variety of employment options. Welders use a variety of welding processes and techniques to build products in a production environment within manufacturing facilities and/or specialty shops. Students study and practice these processes and techniques while following blueprints and customer specifications.

COMPUTER-AIDED DESIGN TECHNOLOGY (CADT)
See the Construction brochure for Computer-Aided Design Technology (CADT).

PROGRAM TIME Est. COST/Month Est. COST* HOURS* AVG. TIME* AVG. WAGE*

<table>
<thead>
<tr>
<th></th>
<th>TIME</th>
<th>EST. COST/MONTH</th>
<th>EST. COST*</th>
<th>HOURS*</th>
<th>AVG. TIME*</th>
<th>AVG. WAGE*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Composites</td>
<td>Day/Eve</td>
<td>$266</td>
<td>$2,086</td>
<td>710</td>
<td>6-12 mos.</td>
<td>$13-$25</td>
</tr>
<tr>
<td></td>
<td>Day/Eve</td>
<td>$249</td>
<td>$1,979</td>
<td>280</td>
<td>2-4 mos.</td>
<td>$10-$16</td>
</tr>
<tr>
<td>Industrial Automation Maintenance</td>
<td>Day/Eve</td>
<td>$253</td>
<td>$2,44</td>
<td>1,200</td>
<td>11-22 mos.</td>
<td>$14-$16</td>
</tr>
<tr>
<td>Machinist I</td>
<td>Day/Eve</td>
<td>$253</td>
<td>$2,45</td>
<td>1,200</td>
<td>11-22 mos.</td>
<td>$14-$16</td>
</tr>
<tr>
<td>Machinist II</td>
<td>Day/Eve</td>
<td>$250</td>
<td>$2,945</td>
<td>1,695</td>
<td>15-30 mos.</td>
<td>$15-$25</td>
</tr>
<tr>
<td>Machinist III</td>
<td>Call</td>
<td>$1,668</td>
<td>720</td>
<td>6-12 mos.</td>
<td>$16-$18</td>
<td></td>
</tr>
<tr>
<td>Metal Fabricator</td>
<td>Day/Eve</td>
<td>$252</td>
<td>$4,062</td>
<td>1,360</td>
<td>12-24 mos.</td>
<td>$15-$22</td>
</tr>
<tr>
<td>Non-Destructive Inspection</td>
<td>Day/Eve</td>
<td>$260</td>
<td>$2,945</td>
<td>900</td>
<td>7-14 mos.</td>
<td>$15-$25</td>
</tr>
<tr>
<td>Soldering Technician</td>
<td>Day/Eve</td>
<td>$327</td>
<td>$1,979</td>
<td>280</td>
<td>2-4 mos.</td>
<td>$10-$16</td>
</tr>
<tr>
<td>Welder – Production</td>
<td>Day/Eve</td>
<td>$252</td>
<td>$2,734</td>
<td>780</td>
<td>7-14 mos.</td>
<td>$12-$18</td>
</tr>
<tr>
<td>Welder – Advanced</td>
<td>Day/Eve</td>
<td>$250</td>
<td>$4,898</td>
<td>1,695</td>
<td>15-30 mos.</td>
<td>$15-$25</td>
</tr>
</tbody>
</table>

* Average time to complete is based on full-time attendance (30 hours/week). Estimated cost is based on full-time attendance and includes tuition, fees, books, and supplies. Hours represent an estimated time students are in class. Wage data is based on overall average wage of entry and experienced employees. Information was collected from ONET, DWS and JATC websites.